Senin, 11 April 2011

METABOLISME HEME

Asam amino merupakan prekursor dari banyak senyawa komplek nitrogen yang penting dalam fungsi fisiologis. Porfirin salah satu dari komplek tersebut, adalah senyawa siklik yang membentuk heme dan klorofil.
Sebagai gugus prostetik dari banyak protein, heme membentuk sejumlah hemeprotein yang secara terus menerus mengalami proses sintesa dan degradasi. Sebagai contoh, 6 sampai 7 gram hemoglobin disintesa setiap hari untuk menggantikan heme yang hilang dalam proses katabolismenya. Pembentukan dan pemecahan komponen porfirin dari hemoglobin berperan dalam menjaga keseimbangan nitrogen tubuh.
Sejumlah kelainan dapat terjadi selama proses sintesa porfirin dan hasil penguraian senyawa porfirin akan membentuk pigmen empedu yaitu bilirubin. Gangguan dalam metabolisme bilirubin selanjutnya akan memunculkan keadaan klinis yang sering dijumpai yaitu ikterus. Ikterus disebabkan adanya kenaikan kadar bilirubin karena sintesanya yang berlebih atau gangguan ekskresinya, biasanya muncul pada sejumlah penyakit yang berkisar dari anemia hemolitik hingga hepatitis serta penyakit kanker pankreas.
METABOLISME HEME
Heme sebagai metaloporfirin
Heme adalah kompleks senyawa protoporfirin IX dengan logam besi yang merupakan gugus prostetik berbagai protein seperti hemoglobin, mioglobin, katalase, peroksidase, sitokrom c dan triptophan pirolase. Kemampuan hemoglobin dan mioglobin mengikat oksigen tergantung pada gugus prostetik ini yang sekaligus memberi warna khas pada kedua hemeprotein tersebut.
Heme terdiri atas bagian organik dan suatu atom besi. Bagian organik protoporfirin tersusun dari empat cincin pirol. Keempat nya terikat satu sama lain melalui jembatan metenil, membentuk cincin tetrapirol. Empat rantai samping metil, dua rantai samping vinil dan dua rantai samping propionil terikat kecincin tetrapirol tersebut .
Atom besi didalam heme mengikat keempat atom nitrogen dipusat cincin protoporfirin. Atom besi dapat berbentuk fero (Fe2+) atau feri (Fe3+) sehingga untuk hemoglobin yang bersangkutan disebut juga sebagai ferohemoglobin dan ferihemoglobin atau methemoglobin. Hanya bila besi dalam bentuk fero, senyawa tersebut dapat mengikat oksigen .
©2004 Digitized by USU digital library 2
Biosintesa porfirin dan heme
Langkah awal biosintesa porfirin pada mamalia ialah kondensasi suksinil ko-A yang berasal dari siklus asam sitrat dalam mitokondria dengan asam amino glisin membentuk asam α amino β ketoadipat, dikatalisis oleh χ amino levulenat sintase dan memerlukan piridoksal phosfat untuk mengaktifkan glisin. Asam diatas segera mengalami dekarboksilasi membentuk χ amino levulenat atau sering disingkat ALA. Enzym ALA sintase merupakan enzym pengendali kecepatan reaksi .
Didalam sitosol 2 molekul ALA berkondensasi dan mengalami reaksi dehidrasi membentuk porfobilinogen/PBG yang dikatalisis oleh ALA dehidratase.
4 molekul PBG berkondensasi membentuk hidroksi metil bilana, suatu tetrapirol linier oleh enzym uroporfirinogen I sintase atau disebut juga PBG deaminase kemudian terjadi reaksi siklisasi spontan membentuk uroporfirinogen, suatu tetrapirol siklik. Pada keadaan normal uroporfirinogen I sintase adalah kompleks enzym dengan uroporfirinogen III kosintase sehingga kerja kedua kompleks enzym tersebut akan membentuk uroporfirinogen III, yang mempunyai susunan rantai samping asimetris. Bila kompleks enzym abnormal atau hanya terdapat enzym sintase saja, di bentuk uroporfirinogen I yaitu suatu bentuk isomer simetris yang tidak fisiologis.
Rangka porfirin sekarang telah terbentuk, uroporfirinogen I atau III mengalami dekarboksilasi membentuk koproporfirinogen I atau III dengan melepas 4 molekul CO2 hingga rantai samping asetat pada uroporfinogen menjadi metil, reaksi ini dikatalisis oleh uroporfirinogen dekarboksilase. Hanya koproporfirinogen III yang dapat kembali masuk kemitokondria, mengalami dekarboksilasi dan oksidasi membentuk protoporfirinogen III oleh enzym koproporfirinogen oksidase, dimana dua rantai samping propionat koproporfirinogen menjadi vinil.
Protoporfirinogen III dioksidasi menjadi protoporfirin III oleh protoporfirinogen oksidase yang memerlukan oksigen. Protoporfirin III diidentifikasi sebagai isomer porfirin seri IX dan disebut juga dengan protoporfirin IX. Porfirin tipe I dan III dibedakan berdasar simetris tidaknya gugus substituen seperti asetat, propionat dan metil pada cincin pirol ke IV.
Penggabungan besi (Fe 2+) ke protoporfirin IX yang dikatalisa oleh Heme sintase atau Ferro katalase dalam mitokondria akan membentuk heme.
Porfiria
Penyakit turunan atau bisa berupa penyakit yang didapat yang disebabkan oleh defisiensi salah satu enzym pada jalur biosintesa heme dan mengakibatkan penumpukan dan peningkatan porfirin atau prazatnya dijaringan atau didalam urine. Kelainan ini jarang dijumpai tapi perlu dipikirkan dalam keadaan tertentu misalnya sebagai diagnosa banding pada penyakit dengan keluhan nyeri abdomen, fotosensitivitas dan gangguan psikiatri .
Porfiria dikelompokkan menjadi 3 golongan yaitu :
1. Porfiria eritropoetik
2. Porfiria hepatik
3. Protoporfiria (gabungan)
Porfiria eritropoetik, merupakan kelainan kongenital. Terjadi karena ketidak seimbangan enzym kompleks uroporfirinogen sintase dan kosintase. Pada jenis porfiria ini dibentuk uroporfirinogen I yang tidak diperlukan dalam jumlah besar. Juga terjadi penumpukan uroporfirin I, koproporfirin I dan derivat simetris lainnya. Penyakit ini diturunkan secara otosomal resesif dan memunculkan fenomena berupa eritrosit yang berumur pendek, urine pasien merah karena ekskresi uroporfirin I dalam jumlah besar, gigi yang berfluoresensi merah karena deposisi porfirin dan kulit yang hipersensitif terhadap sinar karena porfirin yang diaktifkan cahaya bersifat sangat reaktif .
Porfiria hepatik dibagi menjadi beberapa jenis antara lain :
- Intermitten acute porfiria ( IAP )
- Koproporfiria herediter
- Porfiria variegata
- Porfiria cutanea tarda
- Porfiria toksik
IAP terjadi karena defisiensi partial uroporfirinogen I sintase, diturunkan secara otosomal dominan. Pada penyakit ini dijumpai ekskresi porfobilinogen dan asam amino levulenat yang meningkat menyebabkan urine berwarna gelap.
Koproporfiria herediter terjadi karena defisiensi partial koproporfirinogen oksidase, diturunkan secara otosomal dominan. Terdapat peningkatan ekskresi koproporfirinogen dan menyebabkan urine berwarna merah.
Porfiria variegata terjadi karena defisiensi partial protoporfirinogen oksidase, diturunkan secara otosomal dominan. Terdapat peningkatan ekskresi hampir seluruh zat-zat antara sintesa heme.
Porfiria cutanea tarda terjadi karena defisiensi partial uroporfirinogen dekarboksilasi, diturunkan secara otosomal dominan. Terdapat peningkatan ekskresi uroporfirin yang bila terpapar cahaya menyebabkan urine berwarna merah. Porfiria ini paling sering dijumpai dibanding yang lainnya .
Porfiria toksik atau akuisita disebabkan oleh obat atau zat toksik seperti griseofulvin, barbiturat, heksachlorobenzene, Pb dan sebagainya.
Protoporfiria atau protoporfiria gabungan dikarenakan terjadinya defisiensi partial ferrokatalase, diturunkan secara autosomal dominan. Terdapat peningkatan ekskresi protoporfirin dalam urine.
Gejala klinis yang dapat muncul dapat dikelompokkan dalam dua patogenesa yaitu bila kelainan enzym sintesa heme menyebabkan penumpukan asam amino levulenat dan porfobilinogen disel atau cairan tubuh akan menghambat kerja ATP ase dan meracuni neuron sehingga menimbulkan gejala-gejala neuro-psikiatri sedangkan bila kelainan enzym sintesa heme menyebabkan penumpukan porfirinogen dikulit dan dijaringan lain akan teroksidasi spontan membentuk porfirin yang apabila terpapar dengan cahaya, porfirin akan bereaksi dengan O2 molekuler membentuk suatu radikal bebas yang sangat reaktif dan merusak jaringan atau kulit dimana porfirin terdeposisi, peristiwa ini memunculkan gejala-gejala fotosensitivitas.
Therapi yang dapat diberikan hanyalah bersifat symptomatik karena therapi kausal yang bersifat genetik masih sulit dikerjakan. Obat yang dapat dipakai dan beberapa tindakan yang dianjurkan seperti misalnya hindari preparat atau obat yang merangsang aktifitas sitokrom P- 450 seperti obat anestesia, alkohol, steroid dan lain-lain. Hindari zat-zat toksik penyebab porfiria. Pemberian zat-zat seperti glukosa dan hematin yang menekan kerja ALA sintase untuk menghambat pembentukan pra zat porfirin. Pemberian anti oksidan seperti karoten, vitamin E dan C juga dapat dianjurkan pemakaian tabir surya guna menggurangi pemaparan terhadap cahaya.
Katabolisme heme
Dalam keadaan fisiologis, masa hidup erytrosit manusia sekitar 120 hari, eritrosit mengalami lisis 1-2×108 setiap jamnya pada seorang dewasa dengan berat badan 70 kg, dimana diperhitungkan hemoglobin yang turut lisis sekitar 6 gr per hari. Sel-sel eritrosit tua dikeluarkan dari sirkulasi dan dihancurkan oleh limpa. Apoprotein dari hemoglobin dihidrolisis menjadi komponen asam-asam aminonya.
Katabolisme heme dari semua hemeprotein terjadi dalam fraksi mikrosom sel retikuloendotel oleh sistem enzym yang kompleks yaitu heme oksigenase yang merupakan enzym dari keluarga besar sitokrom P450. Langkah awal pemecahan gugus heme ialah pemutusan jembatan α metena membentuk biliverdin, suatu tetrapirol linier. Besi mengalami beberapa kali reaksi reduksi dan oksidasi, reaksi-reaksi ini memerlukan oksigen dan NADPH. Pada akhir reaksi dibebaskan Fe3+ yang dapat digunakan kembali, karbon monoksida yang berasal dari atom karbon jembatan metena dan biliverdin. Biliverdin, suatu pigmen berwarna hijau akan direduksi oleh biliverdin reduktase yang menggunakan NADPH sehingga rantai metenil menjadi rantai metilen antara cincin pirol III – IV dan membentuk pigmen berwarna kuning yaitu bilirubin. Perubahan warna pada memar merupakan petunjuk reaksi degradasi ini.
Bilirubin bersifat lebih sukar larut dalam air dibandingkan dengan biliverdin. Pada reptil, amfibi dan unggas hasil akhir metabolisme heme ialah biliverdin dan bukan bilirubin seperti pada mamalia. Keuntungannya adalah ternyata bilirubin merupakan suatu anti oksidan yang sangat efektif, sedangkan biliverdin tidak. Efektivitas bilirubin yang terikat pada albumin kira-kira 1/10 kali dibandingkan asam askorbat dalam perlindungan terhadap peroksida yang larut dalam air. Lebih bermakna lagi, bilirubin merupakan anti oksidan yang kuat dalam membran, bersaing dengan vitamin E.
Bilirubin dirubah menjadi bentuk larut
Dalam setiap 1 gr hemoglobin yang lisis akan membentuk 35 mg bilirubin. Perhari bilirubin dibentuk sekitar 250–350 mg pada seorang dewasa, berasal dari pemecahan hemoglobin, proses erytropoetik yang tidak efekif dan pemecahan hemprotein lainnya. Bilirubin dari jaringan retikuloendotel adalah bentuk yang sedikit larut dalam plasma dan air. Bilirubin ini akan diikat nonkovalen dan diangkut oleh albumin ke hepar. Dalam 100 ml plasma hanya lebih kurang 25 mg bilirubin yang dapat diikat kuat pada albumin. Bilirubin yang melebihi jumlah ini hanya terikat longgar hingga mudah lepas dan berdiffusi kejaringan.
Bilirubin yang sampai dihati akan dilepas dari albumin dan diambil pada permukaan sinusoid hepatosit oleh suatu protein pembawa yaitu ligandin. Sistem transport difasilitasi ini mempunyai kapasitas yang sangat besar tetapi penggambilan bilirubin akan tergantung pada kelancaran proses yang akan dilewati bilirubin berikutnya.
Bilirubin nonpolar akan menetap dalam sel jika tidak diubah menjadi bentuk larut. Hepatosit akan mengubah bilirubin menjadi bentuk larut yang dapat diekskresikan dengan mudah kedalam kandung empedu. Proses perubahan tersebut melibatkan asam glukoronat yang dikonjugasikan dengan bilirubin, dikatalisis oleh enzym bilirubin glukoronosiltransferase. Hati mengandung sedikitnya dua isoform enzym glukoronosiltransferase yang terdapat terutama pada retikulum endoplasma. Reaksi konjugasi ini berlangsung dua tahap, memerlukan UDP asam glukoronat sebagai donor glukoronat. Tahap pertama akan membentuk bilirubin monoglukoronida sebagai senyawa antara yang kemudian dikonversi menjadi bilirubin diglukoronida yang larut pada tahap kedua.
Ekskresi bilirubin larut kedalam saluran dan kandung empedu berlangsung dengan mekanisme transport aktif yang melawan gradien konsentrasi. Dalam keadaan fisiologis, seluruh bilirubin yang diekskresikan ke kandung empedu berada dalam bentuk terkonjugasi.
Pembentukan urobilin
Bilirubin terkonjugasi yang mencapai ileum terminal dan kolon dihidrolisa oleh enzym bakteri β glukoronidase dan pigmen yang bebas dari glukoronida direduksi oleh bakteri usus menjadi urobilinogen, suatu senyawa tetrapirol tak berwarna.

Sejumlah urobilinogen diabsorbsi kembali dari usus ke perdarahan portal dan dibawa keginjal kemudian dioksidasi menjadi urobilin yang memberi warna kuning pada urine. Sebagian besar urobilinogen berada pada feces akan dioksidasi oleh bakteri usus membentuk sterkobilin yang berwarna kuning kecoklatan.
Hiperbilirubinemia
Hiperbilirubinemia adalah keadaan dimana konsentrasi bilirubin darah melebihi 1 mg/dl. Pada konsentrasi lebih dari 2 mg/dl, hiperbilirubinemia akan menyebabkan gejala ikterik atau jaundice. Ikterik atau jaundice adalah keadaan dimana jaringan terutama kulit dan sklera mata menjadi kuning akibat deposisi bilirubin yang berdiffusi dari konsentrasinya yang tinggi didalam darah.
Hiperbilirubinemia dikelompokkan dalam dua bentuk berdasarkan penyebabnya yaitu hiperbilirubinemia retensi yang disebabkan oleh produksi yang berlebih dan hiperbilirubinemia regurgitasi yang disebabkan refluks bilirubin kedalam darah karena adanya obstruksi bilier.
Hiperbilirubinemia retensi dapat terjadi pada kasus-kasus haemolisis berat dan gangguan konjugasi. Hati mempunyai kapasitas mengkonjugasikan dan mengekskresikan lebih dari 3000 mg bilirubin perharinya sedangkan produksi normal bilirubin hanya 300 mg perhari. Hal ini menunjukkan kapasitas hati yang sangat besar dimana bila pemecahan heme meningkat, hati masih akan mampu meningkatkan konjugasi dan ekskresi bilirubin larut. Akan tetapi lisisnya eritrosit secara massive misalnya pada kasus sickle cell anemia ataupun malaria akan menyebabkan produksi bilirubin lebih cepat dari kemampuan hati mengkonjugasinya sehingga akan terdapat peningkatan bilirubin tak larut didalam darah. Peninggian kadar bilirubin tak larut dalam darah tidak terdeteksi didalam urine sehingga disebut juga dengan ikterik acholuria.
Pada neonatus terutama yang lahir premature peningkatan bilirubin tak larut terjadi biasanya fisiologis dan sementara, dikarenakan haemolisis cepat dalam proses penggantian hemoglobin fetal ke hemoglobin dewasa dan juga oleh karena hepar belum matur, dimana aktivitas glukoronosiltransferase masih rendah. Apabila peningkatan bilirubin tak larut ini melampaui kemampuan albumin mengikat kuat, bilirubin akan berdiffusi ke basal ganglia pada otak dan menyebabkan ensephalopaty toksik yang disebut sebagai kern ikterus.
Beberapa kelainan penyebab hiperbilirubinemia retensi diantaranya seperti Syndroma Crigler Najjar I yang merupakan gangguan konjugasi karena glukoronil transferase tidak aktif, diturunkan secara autosomal resesif, merupakan kasus yang jarang, dimana didapati konsentrasi bilirubin mencapai lebih dari 20 mg/dl.
Syndroma Crigler Najjar II, merupakan kasus yang lebih ringan dari tipe I, karena kerusakan pada isoform glukoronil transferase II, didapati bilirubin monoglukoronida terdapat dalam getah empedu.
Syndroma Gilbert, terjadi karena haemolisis bersama dengan penurunan uptake bilirubin oleh hepatosit dan penurunan aktivitas enzym konjugasi dan diturunkan secara autosomal dominan.
Hiperbilirubinemia regurgitasi paling sering terjadi karena terdapatnya obstruksi pada saluran empedu, misalnya karena tumor, batu, proses peradangan dan sikatrik. Sumbatan pada duktus hepatikus dan duktus koledokus akan menghalangi masuknya bilirubin keusus dan peninggian konsentrasinya pada hati menyebabkan refluks bilirubin larut ke vena hepatika dan pembuluh limfe. Bentuknya yang larut menyebabkan bilirubin ini dapat terdeteksi dalam urine dan disebut sebagai ikterik choluria. Karena terjadinya akibat sumbatan pada saluran empedu disebut juga sebagai ikterus kolestatik. Bilirubin terkonjugasi dapat terikat secara kovalen pada albumin dan membentuk θ bilirubin yang memiliki waktu paruh yang panjang mengakibatkan gejala ikterik dapat berlangsung lebih lama dan masih dijumpai pada masa pemulihan.
Beberapa kelainan lain yang menyebabkan hiperbilirubinemia regurgitasi adalah Syndroma Dubin Johnson, diturunkan secara autosomal resesif, terjadi karena adanya defek pada sekresi bilirubin terkonjugasi dan estrogen ke sistem empedu yang penyebab pastinya belum diketahui.
Syndroma Rotor, terjadi karena adanya defek pada transport anion an organik termasuk bilirubin, dengan gambaran histologi hati normal, penyebab pastinya juga belum dapat diketahui.
Hiperbilirubinemia toksik adalah gangguan fungsi hati karena toksin seperti chloroform, arsfenamin, asetaminofen, carbon tetrachlorida, virus, jamur dan juga akibat cirhosis. Kelainan ini sering terjadi bersama dengan terdapatnya obstruksi. Gangguan konjugasi muncul besama dengan gangguan ekskresi bilirubin dan menyebabkan peningkatan kedua jenis bilirubin baik yang larut maupun yang tidak larut.
Terapi phenobarbital dapat menginduksi proses konjugasi dan ekskresi bilirubin dan menjadi preparat yang menolong pada kasus ikterik neonatus tapi tidak pada sindroma Crigler najjar. Phototerapi dengan cahaya dapat merubah bilirubin menjadi lebih polar dan merubahnya menjadi beberapa isomer yang larut dalam air meskipun tampa konjugasi dengan asam glukoronida sehingga dapat diekskresikan keempedu. Kasus obstruksi umumnya ditangani dengan tindakan bedah.
Pemeriksaan laboratorium sebagai petunjuk diagnostik
UROBILINOGEN
BILIRUBIN
PLASMA
mg/hari
KLINIS
URINE
mg/hari
FESES mg/hari
URINE
indirect
direct
NORMAL
0-4
40-280
(-)
0,2-0,7
0,1-0,4
HEPATITIS


(+)


HEMOLITIK


(-)
↑↑

OBSTRUKSI
(-)
(-)
(+)

↑↑

KESIMPULAN
1. Heme adalah senyawa besi porfirin, dimana empat cincin pirol disatukan oleh jembatan metenil. Delapan rantai samping dari empat cincin pirol dapat berupa gugus asetil, metil, vinil dan propionil.
2. Biosintesa cincin heme berlangsung dalam mitokondria dan sitosol melalui delapan tahapan enzymatik
3. Gangguan dalam setiap tahapan enzymatik sintesa heme mengakibatkan kelainan bawaan yaitu porfiria.
4. Katabolisme heme menghasilkan senyawa biliverdin yang akan direduksi menjadi bilirubin. Zat besi pada heme dan asam amino dari globin akan disimpan atau digunakan kembali.
5. Bilirubin akan diambil oleh sel-sel hati, kemudian dirubah menjadi bentuk larut dan disekresi kedalam kandung empedu. Kerja enzym bakteri dalam usus terhadap bilirubin akan membentuk urobilinogen dan urobilin yang kemudian diekskresi dalam feces dan urine.
6. Kadar bilirubin darah yang meninggi disebut hiperbilirubinemia, menjadi penyebab ikterus. Kelainan ini dikelompokkan berdasar penyebab prehepatik, hepatik dan posthepatik. Pengukuran kadar biliribin dalam darah dan urine serta urobilinogen dalam urine dapat menjadi petunjuk diagnostik dari kelompok penyebab ikterus tersebut.
DAFTAR PUSTAKA
- Champe P C PhD, Harvey R A PhD. Lippincott’s Illustrated Reviews: Biochemistry 2nd .1994 : 257-264
- Lehninger A, Nelson D, Cox M M. Principles of Biochemistry 2nd 1993 : 710-711
- Murray R K, et al. Harper’s Biochemistry 25th ed. Appleton & Lange. America 2000 : 359-373
- Stryer L.1995. Biochemistry 4th : 732-735

Tidak ada komentar:

Posting Komentar